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We report direct observations and reactivity studies of several Scheme 1

catalytic intermediates in enantioselective ketone hydrogenations O Phy ™
that reveal an unexpected role of added base in these systems. Pu, \\N wPh
Among the most significant advances in enantioselective catalysis P/ | i~ lph
is Noyori et al.’s development of the catalyst syst&ans-Ru- Ph, H_H He
(diphosphine)Gldiamine) plus base in 2-PrOHThis remarkable KO:BU
system and its variants hydrogenate aglkyl, vinyl—alkyl, and 1equ1v 2-PrOH THF \:‘0 Bu
. . . . . H,Ogtrace)

certain alkyt-alkyl ketones with high enantiomeric excess, turnover
numbers, and frequenci&s The mechanism of these ketone hy- P,, T N2 2.PrOH B , T oNA Hp
drogenations has been the subject of intense stt#ly.Most at- R| :) THE CP/ | \N> Ko
tempts to observe intermediates in these hydrogenations are impeded th o H, Ph, on H. 8
by long initiation times to convert stable precursors into less stable
catalytic intermediates and by decomposition of active catalyst KO'Bu !
species vig-hydride elimination from the amine liga#tFurther, 1 equw\THF Ru~_ THF\ (BHCHs)s)NK
the key hydrogen atoms in the catalytic cycle, theH Ru—H, Q o !
and Ru-72-H, functionalities, all undergo rapid HD exchange E,f}z Phy | o
at room temperature, impediigl NMR studies of the catalytic CP/ | \H 2 _ﬁ”§N>
cycle in 2-PrOHes. As a result of these difficulties, most mecha- Ph, o H-ofgu” Q/pphﬁ 5
nistic studies must resort to less direct approaches, including kinetics 10
and isotope labeling studies on catalytic mixtures, use of nonprotic Ru—NH] * | H,
solvents, and model compounds containing non-indigenous ligands. Pl

Noyori et al. made the distinguishing mechanistic proposition Hc_g Ph, H H,
for these hydrogenationghat the enantioselective step is a bifunc- products <~ 2 Rlu
tional, ligand-assisted addition of a nucleophilic hydride ligand on "c=0 5: IL \Hz \

Ru and a protic hydrogen on nitrogen to the carbon and oxygen

atoms of the ketone, respectively, through a pericyclic six-membered degree of free K character. Further? is inactive toward the
TS (Scheme 1, bottoni}:¢ Using model compounds, Morris et al.  hydrogenation of acetophenone under 4 atgn3® °C, and 2000
established that one role of the added base is to generate the activeequiv of ketone unless 1 equiv 6BuOK or BH,;~ is added as
dihydride catalystsrans-Ru(diphosphine)(Hjdiamine)?2Base-free base. Compound' therefore does not genera@ewithout added
catalyst precursors, such@ansRu((R)-tol-BINAP)(H)(r7*-BH,)- base under these conditions. We now report our study of the key
((RR)-dpen) (, tol-BINAP = 2,2-bis(ditolylphosphino)-1,1binaph- reaction of2' with base and klunder various conditions.

thyl, dpen= 1,2-diphenylethylenediamine), have been developed Flushing the H from 2-PrOH solutions o2’ with Ar results in
by Noyori et al'¢ They proposed that, in the absence of added base, decomposition, presumably by loss of #hdj3-H elimination from
hydrogenations usingl proceed through the cationioy?-H, the dpen ligand. Reaction @f with 1 equiv oft-BuOK under H
intermediatarans[Ru((R)-tol-BINAP)(H)(r?-H)((RR)-dpen)]” (2). (~2 atm H, 2-PrOH,—80 °C) immediately formed the 2-propox-
As is the case with most of these catalytic hydrogenations, the rateide compoundrans-Ru((R)-BINAP)(H)(2-PrO)(R R)-dpen) @), by

of reaction usingdl increases, peaks, and then decreases as base iseplacement of the labilg?-H, ligand (Scheme 1). The results from
added in increasing concentrations. The initial increase in rate with previous studies infer tha@ may be in equilibrium either with the
added base was accounted for by proposing that stheél, amide [Ru(R)-BINAP)(H)((R,R)-NH(CH(Ph)}NH,))] (5)2 or with

compound? reacts to generate the dihydride compotnashs-[Ru- the cationic solvento compoutidns[Ru((R)-BINAP)(H)(solvent)-
((R)-tol-BINAP)(H)((RR)-dpen)] @) faster in the presence of ((RR)-dpen)] (6).14 Unexpectedly, we found no evidence for the
baseld Although the conversion of thg2-H, compound? into 3 amideb, the solvento compourl nor thetrans-dihydride3' after

was identified as a key step in these hydrogenations, the difficulties prolonged exposures of 2-PrOH solutionsdato H, gas ¢-10 h,
encountered when studying these systems (vide supra) made direct-2 atm, 22°C) in the absence of base. This unexpected stability

information about this step impossible to obtain at the time. of 4 may result from intré>or intermolecular H-bonding between
We recently reported a high yielding, low-temperature synthesis the 2-PrO ligand and an N-H group or 2-PrOH, respectivefy.

of the BINAP-containing cationig?-H, intermediatetrans[Ru- The N—H groups in the dihydrogen compou@dundergo H-D

((R-BINAP)(H)(7?-Hp)((RR)-dpen)]" (2, BINAP = 2,2-bis- exchange with 2-PrOHs upon mixing at—80 °C. The hydride

(diphenylphosphino)-1;dbinaphthyl) in 2-PrOHds containing and#n?-H; ligands begin to exchange with 2-PrQfg-and free H
CH,Cl-d,.5 We found that they?>-H, group in2' is extremely labile, upon warming to~ —60 °C. The N-H groups are therefore kinet-
it is readily displaced by Bt to form 1', and it retains a high ically, at least, the most acidic protonsdn To prevent both HD
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exchange and formation of the 2-propoxidlewe prepare@' in H, to the amide5 is reversiblé?® and it is the axial N-H’s that
THF-dg. THF is a stronger ligand for these compounds than 2-PrOH. participate in this exchange. We also found that the dihydBide
Unlike in 2-PrOH, warming THFds solutions of then?-H, com- could also be prepared by reacting theH, compound2’ with
pound2’ under~2 atm H, reveals an equilibrium that shifts from  ((CHs)sSi);NK under H in dry THF-ds.

~84% 2' at —80 °C to a~ 2:1 mixture of 2" and the solvento This report details the first low-temperature syntheses and

compoundtrans[Ru((R)-BINAP)(H)(THF-dg)((R,R)-dpen)]- 7 at conclusive characterizations of the illusive intermediates, 3,
—50°C. Compound is the THF¢s analogue of the 2-PrOH adduct  and a new intermediate,0. Our results show that any amide
6, a catalytic intermediate proposed by Noyori et al. to react with formed during a catalytic hydrogenation will quickly react with
H, and form2'.1d.eWe found that this equilibrium in THEg shifts the 2-PrOH solvent to form the 2-propoxide This observation,

back to then2-H, compound when cooled te-80 °C, and it along with both the facile displacement of th&H, ligand in2'
shifts to7 when the H is replaced with Ar. Also unlike 2-PrOH, by 2-propoxide and the reversibility oftddition to3', confirms
the THFdg adduct7 does not decompose vjéelimination at Morris et al.’s suggestidh from model studies that the formation
~22 °C. of 4 is in strong competition with kfor the amide5 during these

To study the reaction with base, we found that reactio®'of  catalytic hydrogenations. Unlike the suggestion of Morris et al.,
with ~1 equiv oft-BuOK in THF-dg at —60 °C immediately formed however, we find the formation @fis fast, complete, and not kinet-

the hydroxide analogue df trans-Ru((R)-BINAP)(H)(OH)((R,R)- ically reversible in the absence of base under our conditions. We
dpen) B8, Scheme 1). We found it extremely difficult to keep all  propose that adding base increases the rate of these hydrogenations
traces of HO from THFds to avoid the facile replacement g#- by promoting the base-assisted elimination of 2-propoxide #lom

H.in 2 by hydroxide to forn8, analogous to the reaction in 2-PrOH  to form the amidé (Scheme 1). It has been proposed that addition
(vide supra). Like the 2-propoxide compoudd the hydroxide of H, to the amideb to produced' is the turnover limiting step of
compound did not react with Hgas (2 atm,~22°C) to generate these hydrogenations carried out in the presence of exces¥Base.
the dihydride3'. Reaction of the hydroxid@with ~1 further equiv Our direct observations show that bddition to the amid& occurs

of t-BUOK in THF-dg at —60 °C, however, quickly produced a  at high rates at-80 °C. We predict, therefore, that this hydrogen

new compound that we formulate as the Mequatoriar**O—t-Bu— addition is turnover limiting in the presence of excess base because
hydrogen-bonded speci€® This formulation is based upon the the steady-state concentration fis low during the catalytic
similarities between the signals in the NMR spectradaind 8, hydrogenation.
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